Testing circuit-level theories of consciousness in humans

Our understanding of the neural basis of consciousness is mostly restricted to large-scale brain activity patterns as measured by methods such as functional magnetic resonance imaging (fMRI) and magneto/electro-encephalography (M/EEG). In contrast, we lack even basic understanding of circuit-level mechanisms supporting consciousness – particularly in humans – despite the fundamental role that such mechanisms likely play in instantiating larger-scale brain activity patterns supporting conscious states and contents. Here, we review what progress has been made on circuit-level theories of consciousness (e.g., apical amplification theory, dendritic integration theory) and argue that such theories can be tested in humans using recently developed, state-of-the-art methods. Doing so will further facilitate translation of consciousness science into clinical settings and strengthen the bridge between circuit- and network-level theories of consciousness.