Despite extensive research on Alzheimer’s disease (AD), its diagnosis and treatment remain challenging, and no effective therapies are currently available. Amyloid β (Aβ) extracellular plaques and intracellular neurofibrillary tangles are the histological characteristics of AD that have been directly linked to neuropathological events such as synaptic and neuronal cell loss. In this study, we explored whether the “JAK2-STAT3-BACE1” pathway is involved in neuroprotection conferred by the food flavouring agent β-caryophyllene (BCP). PC-12 cells with overexpressed amyloid-β protein precursor (APP) were utilised to construct an AD model in vitro, which was then split into four groups, namely control, empty vector, APP overexpression, and BCP (5, 10, and 20 μM). CCK-8 was used to evaluate cell viability, immunofluorescence was utilised to examine synaptic morphology, and quantitative real-time polymerase chain reaction and western blot were used to examine gene and protein expression levels. The relative expression levels of JAK2, STAT3, and BACE1 mRNA in the transfected PC-12 cells were found to be significantly upregulated. The cell morphology altered dramatically 72 h after transfection, becoming rounder, with a decrease in cell number. BCP exhibited the potential to dramatically increase PC-12 cell viability while protecting cell morphology. BCP inhibited APP, JAK2, STAT3, BACE1 mRNA and BACE1 protein overexpression, as well as JAK2 and STAT3 hyperphosphorylation. Molecular docking simulated the docking of BCP with JAK2, STAT3, BACE1, CB2. And JAK2 was found to be the most stable protein. In conclusion, inhibition of the “JAK2-STAT3-BACE1” signalling pathway may be one of the mechanisms through which BCP protects neurons and antagonises Aβ’s neurotoxicity.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.