The emerging topic of privacy-preserving deep learning as a service has attracted increasing attention in recent years, which focuses on building an efficient and practical neural network prediction framework to secure client and model-holder data privately on the cloud. In such a task, the time cost of performing the secure linear layers is expensive, where matrix multiplication is the atomic operation. Most existing mix-based solutions heavily emphasized employing BGV-based homomorphic encryption schemes to secure the linear layer on the CPU platform. However, they suffer an efficiency and energy loss when dealing with a larger-scale dataset, due to the complicated encoded methods and intractable ciphertext operations. To address it, we propose cuSCNN, a secure and efficient framework to perform the privacy prediction task of a convolutional neural network (CNN), which can flexibly perform on the GPU platform. Its main idea is 2-fold: (1) To avoid the trivia and complicated homomorphic matrix computations brought by BGV-based solutions, it adopts GSW-based homomorphic matrix encryption to efficiently enable the linear layers of CNN, which is a naive method to secure matrix computation operations. (2) To improve the computation efficiency on GPU, a hybrid optimization approach based on CUDA (Compute Unified Device Architecture) has been proposed to improve the parallelism level and memory access speed when performing the matrix multiplication on GPU. Extensive experiments are conducted on industrial datasets and have shown the superior performance of the proposed cuSCNN framework in terms of runtime and power consumption compared to the other frameworks.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.