Background: Various working memory (WM) trainings have been tested, but differences in experimental designs, the lack of theoretical background, and the need of identifying task-related processes such as filtering efficiency limit conclusions about their comparative efficacy.Objectives: In this study, we compared the efficacy of a model-based WM training with (MB+) and without (MB) distractor inhibition on improving WM capacity to a dual n-back and active control condition.Methods: This randomized clinical trial included 123 healthy elderly adults (78 women, 45 men; aged 64.1 ± 8.3 years). All groups underwent 12 40-min training sessions over 3 weeks and four cognitive testing sessions. The first two sessions served as double baseline to account for practice effects. Primary outcome was WM capacity post-training measured by complex span tasks. Near and far transfer was assessed by simple span, n-back, visuospatial and verbal learning, processing speed, and reasoning tasks.Results: Due to preliminary termination (COVID-19), 93 subjects completed the post-training and 60 subjects the follow-up session. On a whole group level, practice effects occurred from prebaseline to baseline in WM capacity (b = 4.85, t(103) = 4.01, p < 0.001, r = 0.37). Linear mixed-effects models revealed a difference in WM capacity post-training between MB+ and MB (b = −9.62, t(82) = −2.52, p = 0.014, r = 0.27) and a trend difference between MB+ and dual n-back (b = −7.59, t(82) = −1.87, p = 0.065, r = 0.20) and control training (b = −7.08, t(82) = −1.86, p = 0.067, r = 0.20). Univariate analyses showed an increase between pre- and post-training for WM capacity within MB+ (t(22) = −3.34, p < 0.05) only. There was no difference between groups pre- and post-training regarding near and far transfer. Univariate analyses showed improved visuospatial learning within MB+ (t(21) = −3.8, p < 0.05), improved processing speed (t(23) = 2.19, p< 0.05) and n-back performance (t(23) = 2.12, p < 0.05) in MB, and improved n-back performance (t(25) = 3.83, p < 0.001) in the dual n-back training.Interpretation: A model-based WM training including filtering efficacy may be a promising approach to increase WM capacity and needs further investigation in randomized controlled studies.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.