Month: February 2020

Optimizing Computer–Brain Interface Parameters for Non-invasive Brain-to-Brain Interface

A non-invasive, brain-to-brain interface (BBI) requires precision neuromodulation and high temporal resolution as well as portability to increase accessibility. A BBI is a combination of the brain–computer interface (BCI) and the computer–brain interface (CBI). The optimization of BCI parameters has been extensively researched, but CBI has not. Parameters taken from the BCI and CBI literature […]

Published on February 9, 2020

Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty Analysis

The accurate automatic segmentation of gliomas and its intra-tumoral structures is important not only for treatment planning but also for follow-up evaluations. Several methods based on 2D and 3D Deep Neural Networks (DNN) have been developed to segment brain tumors and to classify different categories of tumors from different MRI modalities. However, these networks are […]

Published on February 9, 2020

A Curiosity-Based Learning Method for Spiking Neural Networks

Spiking Neural Networks (SNNs) have shown favorable performance recently. Nonetheless, the time-consuming computation on neuron level and complex optimization limit their real-time application. Curiosity has shown great performance in brain learning, which helps biological brains grasp new knowledge efficiently and actively. Inspired by this leaning mechanism, we propose a curiosity-based SNN (CBSNN) model, which contains […]

Published on February 9, 2020