The basis for computation in the brain is the quantum threshold of “soliton,” which accompanies the ion changes of the action potential, and the refractory membrane at convergences. Here, we provide a logical explanation from the action potential to a neuronal model of the coding and computation of the retina. We also explain how the visual cortex operates through quantum-phase processing. In the small-world network, parallel frequencies collide into definable patterns of distinct objects. Elsewhere, we have shown how many sensory cells are meanly sampled from a single neuron and that convergences of neurons are common. We also demonstrate, using the threshold and refractory period of a quantum-phase pulse, that action potentials diffract across a neural network due to the annulment of parallel collisions in the phase ternary computation (PTC). Thus, PTC applied to neuron convergences results in a collective mean sampled frequency and is the only mathematical solution within the constraints of the brain neural networks (BNN). In the retina and other sensory areas, we discuss how this information is initially coded and then understood in terms of network abstracts within the lateral geniculate nucleus (LGN) and visual cortex. First, by defining neural patterning within a neural network, and then in terms of contextual networks, we demonstrate that the output of frequencies from the visual cortex contains information amounting to abstract representations of objects in increasing detail. We show that nerve tracts from the LGN provide time synchronization to the neocortex (defined as the location of the combination of connections of the visual cortex, motor cortex, auditory cortex, etc.). The full image is therefore combined in the neocortex with other sensory modalities so that it receives information about the object from the eye and all the abstracts that make up the object. Spatial patterns in the visual cortex are formed from individual patterns illuminating the retina, and memory is encoded by reverberatory loops of computational action potentials (CAPs). We demonstrate that a similar process of PTC may take place in the cochlea and associated ganglia, as well as ascending information from the spinal cord, and that this function should be considered universal where convergences of neurons occur.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.