IntroductionParkinson’s disease (PD) is a neurodegenerative disorder with different motor and neurocognitive symptoms. Tremor is a well-known symptom of this disease. Increasing evidence suggested that the cerebellum may substantially contribute to tremors as a clinical symptom of PD. However, the theoretical foundations behind these observations are not yet fully understood.MethodsIn this study, a computational model is proposed to consider the role of the cerebellum and to show the effectiveness of cerebellar transcranial alternating current stimulation (tACS) on the rest tremor in participants with PD. The proposed model consists of the cortex, cerebellum, spinal circuit-muscular system (SC-MS), and basal ganglia blocks as the most critical parts of the brain, which are involved in generating rest tremors. The cortex, cerebellum, and SC-MS blocks were modeled using Van der Pol oscillators that interacted through synchronization procedures. Basal ganglia are considered as a regulator of the coupling weights defined between oscillators. In order to evaluate the global behavior of the model, we applied tACS on the cerebellum of fifteen PD patients for 15 min at each patient’s peak frequency of their rest tremors. A tri-axial accelerometer recorded rest tremors before, during, and after the tACS.Results and DiscussionThe simulation of the model provides a suggestion for the possible role of the cerebellum on rest tremors and how cerebellar tACS can affect these tremors. Results of human experiments also showed that the online and offline effects of cerebellar tACS could lead to the reduction of rest tremors significantly by about %76 and %68, respectively. Our findings suggest that the cerebellar tACS could serve as a reliable, therapeutic technique to suppress the PD tremor.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.