IntroductionWhite matter hyperintensities (WMHs) are a common age- and vascular risk factor-related disease and have been recognized to play an important role in cognitive impairment. However, it is still unclear what the mechanism of this effect is. In this study, intravoxel incoherent motion (IVIM) was employed to assess the microvasculature and parenchymal microstructure changes of WMHs and explore their relationship with cognitive function.MethodsForty-nine WMH patients and thirty-one healthy controls underwent IVIM imaging, a diffusion technique that provides parenchymal diffusivity D, intravascular diffusivity D*, and perfusion fraction f . The IVIM dual exponential model parameters were obtained in specific regions of interest, including deep white matter hyperintensities (DWMHs), periventricular white matter hyperintensities (PWMHs), and normal-appearing white matter (NAWM). The independent-sample t-test or Mann–Whitney U-test was utilized to compare IVIM parameters between patients and controls. The Kruskal–Wallis test or one-way analysis of variance was used to compare IVIM parameters among DWMH, PWMH, and NAWM for patients. The Wilcoxon two-sample test or independent-sample t-test was used to assess the differences in IVIM parameters based on the severity of WMH. The multivariate linear regression analysis was conducted to explore the factors influencing cognitive scores.ResultsWMH patients exhibited significantly higher parenchymal diffusivity D than controls in DWMH, PWMH, and NAWM (all p < 0.05). IVIM parameters in the three groups (DWMH, PWMH, and NAWM) were significantly different for patients (all p < 0.001). The severe WMH group had a significantly higher parenchymal diffusivity D (DWMH and PWMH) than mild WMH (both p < 0.05). The multiple linear regression analysis identified D in DWMH and PWMH as influencing cognitive function scores (all p < 0.05).ConclusionIVIM has the potential to provide a quantitative marker of parenchymal diffusivity for assessing the severity of WMH and may serve as a quantitative marker of cognitive dysfunction in WMH patients.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.