Imagine you’re trying to build a complex structure with Legos. You could use the standard basic blocks, but they might not be enough to bring your creation to life. That’s where the power of Combinatory Categorial Grammars (CCGs) comes in for modeling language comprehension in our brains. Just like how CCGs offer more flexibility and expressiveness for grammar, they also offer a better fit for understanding neural signals in our brain while we listen to a story. The left posterior temporal lobe seems to light up with excitement when CCG-based measures are used, showing that structure-building is separate from predictability in our brains. Combined with the insights gained from a transformer neural network language model, this research opens up new horizons for studying how our brains process language in naturalistic environments. Want to dive deeper into this fascinating study? Check out the full article!
Abstract
To model behavioral and neural correlates of language comprehension in naturalistic environments, researchers have turned to broad-coverage tools from natural-language processing and machine learning. Where syntactic structure is explicitly modeled, prior work has relied predominantly on context-free grammars (CFGs), yet such formalisms are not sufficiently expressive for human languages. Combinatory categorial grammars (CCGs) are sufficiently expressive directly compositional models of grammar with flexible constituency that affords incremental interpretation. In this work, we evaluate whether a more expressive CCG provides a better model than a CFG for human neural signals collected with functional magnetic resonance imaging (fMRI) while participants listen to an audiobook story. We further test between variants of CCG that differ in how they handle optional adjuncts. These evaluations are carried out against a baseline that includes estimates of next-word predictability from a transformer neural network language model. Such a comparison reveals unique contributions of CCG structure-building predominantly in the left posterior temporal lobe: CCG-derived measures offer a superior fit to neural signals compared to those derived from a CFG. These effects are spatially distinct from bilateral superior temporal effects that are unique to predictability. Neural effects for structure-building are thus separable from predictability during naturalistic listening, and those effects are best characterized by a grammar whose expressive power is motivated on independent linguistic grounds.
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.