Just like learning how to ride a bike, training spiking neural networks can be a complex and time-consuming process. But fear not! Scientists have come up with an efficient and scalable algorithm that makes the training process faster and more resource-friendly. It’s like upgrading from a regular bicycle to a high-speed electric bike! Using optimized CPU and GPU implementations of the recursive least-squares algorithm, researchers were able to train networks with millions of neurons and billions of synapses in record time. In fact, the GPU implementation was a whopping 1,000 times faster than the unoptimized CPU version! With this algorithm, scientists can now simulate the complex computations performed by the nervous system in a more interactive and realistic manner. They can even train models while in-vivo experiments are being conducted, bridging the gap between modeling and real-world observations. If you’re curious to dive deeper into the research, check out the full article!
Training spiking recurrent neural networks on neuronal recordings or behavioral tasks has become a popular way to study computations performed by the nervous system. As the size and complexity of neural recordings increase, there is a need for efficient algorithms that can train models in a short period of time using minimal resources. We present optimized CPU and GPU implementations of the recursive least-squares algorithm in spiking neural networks. The GPU implementation can train networks of one million neurons, with 100 million plastic synapses and a billion static synapses, about 1,000 times faster than an unoptimized reference CPU implementation. We demonstrate the code’s utility by training a network, in less than an hour, to reproduce the activity of > 66, 000 recorded neurons of a mouse performing a decision-making task. The fast implementation enables a more interactive in-silico study of the dynamics and connectivity underlying multi-area computations. It also admits the possibility to train models as in-vivo experiments are being conducted, thus closing the loop between modeling and experiments.
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.