Imagine watching a visual illusion that constantly switches between two different images. This phenomenon, called multistable perception, allows researchers to explore how our brain processes and integrates sensory information. As we age, however, these processes start to slow down, resulting in fewer perceptual reversals. To understand the neural changes underlying this effect, scientists conducted a study using electroencephalography (EEG) to measure brain activity in older and younger adults during multistable perception tasks. They found that older adults exhibited compensatory alpha activity in various brain regions compared to young adults. This increased alpha activity may reflect the recruitment of additional neural networks to maintain stable percepts. The findings suggest that older adults adapt by employing additional resources to compensate for age-related changes in perceptual processing. These insights into the aging brain’s ability to adapt highlight the remarkable flexibility of our neural circuits. To learn more about this fascinating research and the effects of age on multistable perception, read the full article!
Multistable stimuli lead to the perception of two or more alternative perceptual experiences that spontaneously reverse from one to the other. This property allows researchers to study perceptual processes that endogenously generate and integrate perceptual information. These endogenous processes appear to be slowed down around the age of 55 where participants report significantly lower perceptual reversals. This study aimed to identify neural correlates of this aging effect during multistable perception utilizing a multistable version of the stroboscopic alternative motion paradigm (SAM: endogenous task) and a control condition (exogenous task). Specifically, age-related differences in perceptual destabilization and maintenance processes were examined through alpha responses. Electroencephalography (EEG) of 12 older and 12 young adults were recorded during SAM and control tasks. Alpha band activity (8–14 Hz) was obtained by wavelet-transformation of the EEG signal and analyzed for each experimental condition. Endogenous reversals induced gradual decrease in posterior alpha activity in young adults which is a replication of previous studies’ findings. Alpha desynchronization was shifted to anterior areas and prevalent across the cortex except the occipital area for older adults. Alpha responses did not differ between the groups in the control condition. These findings point to recruitment of compensatory alpha networks for maintenance of endogenously generated percepts. Increased number of networks responsible for maintenance might have extended the neural satiation duration and led to decreased reversal rates in older adults.
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.