Imagine a group of related disorders like distant cousins at a family reunion. In this case, Parkinson’s disease (PD) and dystonia are the close cousins, sharing similar characteristics. However, scientists have been digging deeper to determine the exact genetic ties between these two conditions. By analyzing the genetic makeup of a large Chinese cohort, researchers focused on 47 known dystonia-related genes. They discovered potentially pathogenic variants in patients with PD, highlighting specific genes like COL6A3 and TH that may play a significant role. Additionally, they identified deleterious variants in dominant dystonia-related genes such as ANO3, ADCY5, and SLC2A1. Although not statistically significant after rigorous analysis, these findings shed light on the potential association between dystonia-related genes and PD. Excited by these preliminary findings, further exploration awaits those who are eager to immerse themselves in the fascinating world of genetics and movement disorders!
ObjectiveParkinson’s disease (PD) and dystonia are two closely related movement disorders with overlaps in clinical phenotype. Variants in several dystonia-related genes were demonstrated to be associated with PD; however, genetic evidence for the involvement of dystonia-related genes in PD has not been fully studied. Here, we comprehensively investigated the association between rare variants in dystonia-related genes and PD in a large Chinese cohort.MethodsWe comprehensively analyzed the rare variants of 47 known dystonia-related genes by mining the whole-exome sequencing (WES) and whole-genome sequencing (WGS) data from 3,959 PD patients and 2,931 healthy controls. We initially identified potentially pathogenic variants of dystonia-related genes in patients with PD based on different inheritance models. Sequence kernel association tests were conducted in the next step to detect the association between the burden of rare variants and the risk for PD.ResultsWe found that five patients with PD carried potentially pathogenic biallelic variants in recessive dystonia-related genes including COL6A3 and TH. Additionally, we identified 180 deleterious variants in dominant dystonia-related genes based on computational pathogenicity predictions and four of which were considered as potentially pathogenic variants (p.W591X and p.G820S in ANO3, p.R678H in ADCY5, and p.R458Q in SLC2A1). A gene-based burden analysis revealed the increased burden of variant subgroups of TH, SQSTM1, THAP1, and ADCY5 in sporadic early-onset PD, whereas COL6A3 was associated with sporadic late-onset PD. However, none of them reached statistical significance after the Bonferroni correction.ConclusionOur findings indicated that rare variants in several dystonia-related genes are suggestively associated with PD, and taken together, the role of COL6A3 and TH genes in PD is highlighted.
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.