Imagine you’re a garden with little sprinklers. You rely on a proper water flow to keep your plants healthy and vibrant. But sometimes, the pipes get clogged, and water can’t flow freely. This can lead to withered plants, reduced growth, and overall poor garden health. Well, our brain is like a garden too, and when blood flow to the brain is restricted, it can result in vascular dementia. In this study, scientists tested the effects of a special peptide called AV-001, which mimics Angiopoietin-1, in rats with vascular dementia. They found that treatment with AV-001 improved memory, reduced inflammation in the brain, and enhanced the function of the glymphatic system – a waste clearance pathway in the brain. These early therapeutic effects provide hope for potential treatments for people with vascular dementia. Intriguingly, AV-001 also increased the expression of AQP4, an important protein involved in maintaining water balance in the brain. This suggests that by clearing clogs and improving water flow in the garden of our brains, AV-001 may help restore cognitive function in individuals affected by vascular dementia. Further research is needed to fully understand how this peptide works and its long-term effects on dementia patients.
BackgroundVascular Dementia (VaD) refers to dementia caused by cerebrovascular disease and/or reduced blood flow to the brain and is the second most common form of dementia after Alzheimer’s disease. We previously found that in middle-aged rats subjected to a multiple microinfarction (MMI) model of VaD, treatment with AV-001, a Tie2 receptor agonist, significantly improves short-term memory, long-term memory, as well as improves preference for social novelty compared to control MMI rats. In this study, we tested the early therapeutic effects of AV-001 on inflammation and glymphatic function in rats subjected to VaD.MethodsMale, middle-aged Wistar rats (10–12 m), subjected to MMI, were randomly assigned to MMI and MMI + AV-001 treatment groups. A sham group was included as reference group. MMI was induced by injecting 800 ± 200, 70–100 μm sized, cholesterol crystals into the internal carotid artery. Animals were treated with AV-001 (1 μg/Kg, i.p.) once daily starting at 24 h after MMI. At 14 days after MMI, inflammatory factor expression was evaluated in cerebrospinal fluid (CSF) and brain. Immunostaining was used to evaluate white matter integrity, perivascular space (PVS) and perivascular Aquaporin-4 (AQP4) expression in the brain. An additional set of rats were prepared to test glymphatic function. At 14 days after MMI, 50 μL of 1% Tetramethylrhodamine (3 kD) and FITC conjugated dextran (500 kD) at 1:1 ratio were injected into the CSF. Rats (4–6/group/time point) were sacrificed at 30 min, 3 h, and 6 h from the start of tracer infusion, and brain coronal sections were imaged using a Laser scanning confocal microscope to evaluate tracer intensities in the brain.ResultTreatment of MMI with AV-001 significantly improves white matter integrity in the corpus callosum at 14 days after MMI. MMI induces significant dilation of the PVS, reduces AQP4 expression and impairs glymphatic function compared to Sham rats. AV-001 treatment significantly reduces PVS, increases perivascular AQP4 expression and improves glymphatic function compared to MMI rats. MMI significantly increases, while AV-001 significantly decreases the expression of inflammatory factors (tumor necrosis factor-α (TNF-α), chemokine ligand 9) and anti-angiogenic factors (endostatin, plasminogen activator inhibitor-1, P-selectin) in CSF. MMI significantly increases, while AV-001 significantly reduces brain tissue expression of endostatin, thrombin, TNF-α, PAI-1, CXCL9, and interleukin-6 (IL-6).ConclusionAV-001 treatment of MMI significantly reduces PVS dilation and increases perivascular AQP4 expression which may contribute to improved glymphatic function compared to MMI rats. AV-001 treatment significantly reduces inflammatory factor expression in the CSF and brain which may contribute to AV-001 treatment induced improvement in white matter integrity and cognitive function.
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.