Imagine you’re studying two different types of apples: early-blooming apples and late-blooming apples. In this study, scientists wanted to understand the characteristics of a specific aspect of the subthalamic nucleus (STN) in Parkinson’s disease patients who developed symptoms at an early age (early-onset) versus those who developed symptoms later in life (late-onset). They found that the low-beta activity in the STN of early-onset patients had different patterns compared to the late-onset patients. This suggests that there may be different underlying mechanisms at play in these two groups, which could have implications for treatment options such as deep brain stimulation. By exploring these variations, scientists can gain a better understanding of the diverse nature of Parkinson’s disease and tailor treatment approaches accordingly! To learn more about this fascinating research, check out the full article.
ObjectivesLow-beta oscillation (13–20 Hz) has rarely been studied in patients with early-onset Parkinson’s disease (EOPD, age of onset ≤50 years). We aimed to explore the characteristics of low-beta oscillation in the subthalamic nucleus (STN) of patients with EOPD and investigate the differences between EOPD and late-onset Parkinson’s disease (LOPD).MethodsWe enrolled 31 EOPD and 31 LOPD patients, who were matched using propensity score matching. Patients underwent bilateral STN deep brain stimulation (DBS). Local field potentials were recorded using intraoperative microelectrode recording. We analyzed the low-beta band parameters, including aperiodic/periodic components, beta burst, and phase-amplitude coupling. We compared low-beta band activity between EOPD and LOPD. Correlation analyses were performed between the low-beta parameters and clinical assessment results for each group.ResultsWe found that the EOPD group had lower aperiodic parameters, including offset (p = 0.010) and exponent (p = 0.047). Low-beta burst analysis showed that EOPD patients had significantly higher average burst amplitude (p = 0.016) and longer average burst duration (p = 0.011). Furthermore, EOPD had higher proportion of long burst (500–650 ms, p = 0.008), while LOPD had higher proportion of short burst (200–350 ms, p = 0.007). There was a significant difference in phase-amplitude coupling values between low-beta phase and fast high frequency oscillation (300–460 Hz) amplitude (p = 0.019).ConclusionWe found that low-beta activity in the STN of patients with EOPD had characteristics that varied when compared with LOPD, and provided electrophysiological evidence for different pathological mechanisms between the two types of PD. These differences need to be considered when applying adaptive DBS on patients of different ages.
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.