Unveiling the Mysterious EEG Markers of Propofol-Induced Loss of Consciousness

Published on January 18, 2023

Imagine you’re exploring a secret room in an old mansion. As you step inside, the room transforms, revealing hidden treasures and unknown symbols. Similarly, scientists have delved deep into the electroencephalographic (EEG) spectrum to uncover age-independent markers of propofol-induced loss of consciousness (LOC). By breaking down the EEG into its periodic and aperiodic components, researchers identified unique features that indicate the transition to unconsciousness. These features include the appearance of spatially coherent frontal alpha oscillations in the frequency range of 8–12 Hz. Through meticulous analysis, they characterized these alpha oscillations by measuring parameters like adjusted power, center frequency, and bandwidth. Interestingly, age plays a role in these markers, with differences observed in older individuals compared to younger ones. The findings present a step forward in understanding the neural mechanisms underlying anesthesia induction and provide potential avenues for improving patient monitoring during surgery or sedation procedures. If you’re curious about the intricate details and want to uncover more about these age-independent EEG markers, dive into the full research article!

BackgroundInduction of general anesthesia with propofol induces radical changes in cortical network organization, leading to unconsciousness. While perioperative frontal electroencephalography (EEG) has been widely implemented in the past decades, validated and age-independent EEG markers for the timepoint of loss of consciousness (LOC) are lacking. Especially the appearance of spatially coherent frontal alpha oscillations (8–12 Hz) marks the transition to unconsciousness.Here we explored whether decomposing the EEG spectrum into its periodic and aperiodic components unveiled markers of LOC and investigated their age-dependency. We further characterized the LOC-associated alpha oscillations by parametrizing the adjusted power over the aperiodic component, the center frequency, and the bandwidth of the peak in the alpha range.MethodsIn this prospective observational trial, EEG were recorded in a young (18–30 years) and an elderly age-cohort (≥ 70 years) over the transition to propofol-induced unconsciousness. An event marker was set in the EEG recordings at the timepoint of LOC, defined with the suppression of the lid closure reflex. Spectral analysis was conducted with the multitaper method. Aperiodic and periodic components were parametrized with the FOOOF toolbox. Aperiodic parametrization comprised the exponent and the offset. The periodic parametrization consisted in the characterization of the peak in the alpha range with its adjusted power, center frequency and bandwidth. Three time-segments were defined: preLOC (105 – 75 s before LOC), LOC (15 s before to 15 s after LOC), postLOC (190 – 220 s after LOC). Statistical significance was determined with a repeated-measures ANOVA.ResultsLoss of consciousness was associated with an increase in the aperiodic exponent (young: p = 0.004, elderly: p = 0.007) and offset (young: p = 0.020, elderly: p = 0.004) as well as an increase in the adjusted power (young: p < 0.001, elderly p = 0.011) and center frequency (young: p = 0.008, elderly: p < 0.001) of the periodic alpha peak. We saw age-related differences in the aperiodic exponent and offset after LOC as well as in the power and bandwidth of the periodic alpha peak during LOC.ConclusionDecomposing the EEG spectrum over induction of anesthesia into its periodic and aperiodic components unveiled novel age-independent EEG markers of propofol-induced LOC: the aperiodic exponent and offset as well as the center frequency and adjusted power of the power peak in the alpha range.

Read Full Article (External Site)

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>