Can Neural Networks Predict the Success of Dental Implants?

Published on December 7, 2022

Imagine if your dentist had a crystal ball that could predict the success of a dental implant. Well, artificial intelligence is bringing us one step closer! A group of researchers has developed a neural network system that analyzes various statistical factors of patients to determine the likelihood of single implant survival. It’s like having a virtual assistant that takes into account all the important information about a patient’s condition and makes a prediction. Using artificial intelligence technology, this system can analyze a large amount of digital data to provide an accurate assessment. By recognizing patterns in patient statistics, it can achieve an impressive recognition accuracy of 94.48%. This means that dentists can now have an additional tool to support their decision-making process for dental implants. However, it’s important to note that this system is not meant to replace a dentist’s clinical evaluation and expertise. It simply provides valuable insights based on mathematical analysis. If you’re curious about the future of dental implantology and how neural networks can improve treatment outcomes, check out the research article for more information!

Implants are now the standard method of replacing missing or damaged teeth. Despite the improving technologies for the manufacture of implants and the introduction of new protocols for diagnosing, planning, and performing implant placement operations, the percentage of complications in the early postoperative period remains quite high. In this regard, there is a need to develop new methods for preliminary assessment of the patient’s condition to predict the success of single implant survival. The intensive development of artificial intelligence technologies and the increase in the amount of digital information that is available for analysis make it relevant to develop systems based on neural networks for auxiliary diagnostics and forecasting. Systems based on artificial intelligence in the field of dental implantology can become one of the methods for forming a second opinion based on mathematical decision making and forecasting. The actual clinical evaluation of a particular case and further treatment are carried out by the dentist, and AI-based systems can become an integral part of additional diagnostics. The article proposes an artificial intelligence system for analyzing various patient statistics to predict the success of single implant survival. As the topology of the neural network, the most optimal linear neural network architectures were developed. The one-hot encoding method was used as a preprocessing method for statistical data. The novelty of the proposed system lies in the developed optimal neural network architecture designed to recognize the collected and digitized database of various patient factors based on the description of the case histories. The accuracy of recognition of statistical factors of patients for predicting the success of single implants in the proposed system was 94.48%. The proposed neural network system makes it possible to achieve higher recognition accuracy than similar neural network prediction systems due to the analysis of a large number of statistical factors of patients. The use of the proposed system based on artificial intelligence will allow the implantologist to pay attention to the insignificant factors affecting the quality of the installation and the further survival of the implant, and reduce the percentage of complications at all stages of treatment. However, the developed system is not a medical device and cannot independently diagnose patients. At this point, the neural network system for analyzing the statistical factors of patients can predict a positive or negative outcome of a single dental implant operation and cannot be used as a full-fledged tool for supporting medical decision-making.

Read Full Article (External Site)

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>