Unleashing the Power of Simulated Intracranial Electrodes

Published on October 6, 2022

Imagine a group of scientists trying to survey an uncharted land. They need to map out the terrain accurately to draw meaningful conclusions about its features and functions. Similarly, in the world of brain research, intracranial electrodes are like the scientists’ tools, providing a window into the mysterious realm of brain activity. But how do we know if these electrodes are correctly detecting and locating brain signals? That’s where a simulation platform comes in. Researchers have developed a groundbreaking method to model intracranial electrode arrays and simulate realistic implantation scenarios. This allows them to evaluate and optimize localization algorithms that identify the precise location of these electrodes in the cerebral cortex. By creating thousands of simulated CT artifact arrays with varying levels of noise, they were able to rigorously test and validate these algorithms. This platform provides an essential tool for future advancements in electrode localization techniques. The possibilities for exploring brain function are endless!

IntroductionIntracranial electrodes are implanted in patients with drug-resistant epilepsy as part of their pre-surgical evaluation. This allows the investigation of normal and pathological brain functions with excellent spatial and temporal resolution. The spatial resolution relies on methods that precisely localize the implanted electrodes in the cerebral cortex, which is critical for drawing valid inferences about the anatomical localization of brain function. Multiple methods have been developed to localize the electrodes, mainly relying on pre-implantation MRI and post-implantation computer tomography (CT) images. However, they are hard to validate because there is no ground truth data to test them and there is no standard approach to systematically quantify their performance. In other words, their validation lacks standardization. Our work aimed to model intracranial electrode arrays and simulate realistic implantation scenarios, thereby providing localization algorithms with new ways to evaluate and optimize their performance.ResultsWe implemented novel methods to model the coordinates of implanted grids, strips, and depth electrodes, as well as the CT artifacts produced by these. We successfully modeled realistic implantation scenarios, including different sizes, inter-electrode distances, and brain areas. In total, ∼3,300 grids and strips were fitted over the brain surface, and ∼850 depth electrode arrays penetrating the cortical tissue were modeled. Realistic CT artifacts were simulated at the electrode locations under 12 different noise levels. Altogether, ∼50,000 thresholded CT artifact arrays were simulated in these scenarios, and validated with real data from 17 patients regarding the coordinates’ spatial deformation, and the CT artifacts’ shape, intensity distribution, and noise level. Finally, we provide an example of how the simulation platform is used to characterize the performance of two cluster-based localization methods.ConclusionWe successfully developed the first platform to model implanted intracranial grids, strips, and depth electrodes and realistically simulate thresholded CT artifacts and their noise. These methods provide a basis for developing more complex models, while simulations allow systematic evaluation of the performance of electrode localization techniques. The methods described in this article, and the results obtained from the simulations, are freely available via open repositories. A graphical user interface implementation is also accessible via the open-source iElectrodes toolbox.

Read Full Article (External Site)

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>