Imagine you’re a detective trying to solve a mystery. You have access to a fancy tool that analyzes fingerprints and footprints left at the crime scene. However, this tool is relatively new, and you’re not sure if it’s reliable enough to guide your investigation. That’s exactly what researchers were exploring in a recent study, but instead of fingerprints, they were using normative brain volume reports (NBVR) to help diagnose neurodegenerative dementia disorders. They looked at data from 112 patients who were referred for MRI scans and 18F-fluorodeoxyglucose (FDG) positron emission tomography. The results showed that while NBVRs had some impact on diagnostic accuracy, it was limited and not statistically significant. However, it did show promise in increasing the specificity and confidence of resident doctors in interpreting brain scans. So while this tool might not be the game-changer it was hoped to be just yet, further research and improvements in how these reports are generated could make them an invaluable resource in the future.
Background: Normative brain volume reports (NBVR) are becoming more available in the work-up of patients with suspected dementia disorders, potentially leveraging the value of structural MRI in clinical settings. The present study aims to investigate the impact of NBVRs on the diagnosis of neurodegenerative dementia disorders in real-world clinical practice.Methods: We retrospectively analyzed data of 112 memory clinic patients, who were consecutively referred for MRI and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) during a 12-month period. Structural MRI was assessed by two residents with 2 and 3 years of neuroimaging experience. Statements and diagnostic confidence regarding the presence of a neurodegenerative disorder in general (first level) and Alzheimer’s disease (AD) pattern in particular (second level) were recorded without and with NBVR information. FDG-PET served as the reference standard.Results: Overall, despite a trend towards increased accuracy, the impact of NBVRs on diagnostic accuracy was low and non-significant. We found a significant drop of sensitivity (0.75–0.58; p < 0.001) and increase of specificity (0.62–0.85; p < 0.001) for rater 1 at identifying patients with neurodegenerative dementia disorders. Diagnostic confidence increased for rater 2 (p < 0.001).Conclusions: Overall, NBVRs had a limited impact on diagnostic accuracy in real-world clinical practice. Potentially, NBVR might increase diagnostic specificity and confidence of neuroradiology residents. To this end, a well-defined framework for integration of NBVR in the diagnostic process and improved algorithms of NBVR generation are essential.
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.