Imagine trying to remember a series of numbers in reverse order, but your ability to hear is compromised. Well, that’s what researchers simulated in this study to understand how age-related hearing loss affects cognitive performance. By simulating mild-to-moderate hearing loss in young participants, they found that the performance on the backward-digit-span task was impaired, especially when the simulated loss resembled that of someone aged 75 years and older. Interestingly, in the normal hearing condition, performance on the task correlated with both short-term and working memory tests. However, when simulating moderate hearing loss, only performance on working-memory tests had a correlation with backward-digit-span task performance. This suggests that age-related hearing loss not only affects cognitive performance but can also alter the underlying cognitive processes involved in completing a task. The findings highlight the importance of addressing and managing hearing loss to maintain cognitive function. If you want to dive deeper into this fascinating research, check out the full article!
The recall of auditorily presented sequences of digits in reverse order (also known as the Backward Digit Span, BDS) is considered to reflect a person’s information storage and processing abilities which have been linked to speech-in-noise intelligibility. However, especially in aging research and audiology, persons who are administered the BDS task are often affected by hearing loss (HL). If uncorrected, HL can have immediate assessment-format-related effects on cognitive-test performance and can result, in the long term, in neuroplastic changes impacting cognitive functioning. In the present study, an impairment-simulation approach, mimicking mild-to-moderate age-related HLs typical for persons aged 65, 75, and 85 years, was used in 19 young normal-hearing participants to evaluate the impact of HL on cognitive performance and the cognitive processes probed by the BDS task. Participants completed the BDS task in several listening conditions, as well as several commonly used visual tests of short-term and working memory. The results indicated that BDS performance was impaired by a simulated HL representing that of persons aged 75 years and above. In the normal-hearing condition, BDS performance correlated positively with both performance on tests of short-term memory and performance on tests of working memory. In the listening condition simulating moderate HL (as experienced by the average 85-year-old person), BDS performance only correlated with performance on working-memory tests. In conclusion, simulated (and, by extrapolation, actual) age-related HL negatively affects cognitive-test performance and may change the composition of the cognitive processes associated with the completion of a cognitive task.
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.