Mapping the Brain’s Metastatic Tumors with Deep Learning

Published on August 3, 2022

Imagine the brain as a bustling city, with metastatic tumors invading its neighborhoods. Scientists have developed a deep learning network that acts like a skilled cartographer, dissecting MRI images of the brain to identify the origins and genetic status of these tumors. By partitioning the tumors into subregions, the network can accurately predict whether they came from non-small cell lung cancer (NSCLC), breast cancer (BC), or other tumor types. Furthermore, it can determine if specific genetic mutations, such as EGFR or HER2, are present. The network’s accuracy in training and validation sets suggests it could become a valuable tool in guiding personalized treatment plans for patients with brain metastasis. This groundbreaking research opens up new possibilities for non-invasive and preoperative markers in cancer treatment.

PurposeTo propose a deep learning network with subregion partition for predicting metastatic origins and EGFR/HER2 status in patients with brain metastasis.MethodsWe retrospectively enrolled 140 patients with clinico-pathologically confirmed brain metastasis originated from primary NSCLC (n = 60), breast cancer (BC, n = 60) and other tumor types (n = 20). All patients underwent contrast-enhanced brain MRI scans. The brain metastasis was subdivided into phenotypically consistent subregions using patient-level and population-level clustering. A residual network with a global average pooling layer (RN-GAP) was proposed to calculate deep learning-based features. Features from each subregion were selected with least absolute shrinkage and selection operator (LASSO) to build logistic regression models (LRs) for predicting primary tumor types (LR-NSCLC for the NSCLC origin and LR-BC for the BC origin), EGFR mutation status (LR-EGFR) and HER2 status (LR-HER2).ResultsThe brain metastasis can be partitioned into a marginal subregion (S1) and an inner subregion (S2) in the MRI image. The developed models showed good predictive performance in the training (AUCs, LR-NSCLC vs. LR-BC vs. LR-EGFR vs. LR-HER2, 0.860 vs. 0.909 vs. 0.850 vs. 0.900) and validation (AUCs, LR-NSCLC vs. LR-BC vs. LR-EGFR vs. LR-HER2, 0.819 vs. 0.872 vs. 0.750 vs. 0.830) set.ConclusionOur proposed deep learning network with subregion partitions can accurately predict metastatic origins and EGFR/HER2 status of brain metastasis, and hence may have the potential to be non-invasive and preoperative new markers for guiding personalized treatment plans in patients with brain metastasis.

Read Full Article (External Site)

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>