Imagine your brain is a bustling city, with different neighborhoods representing different functions. In Parkinson’s disease (PD), cognitive impairment is like a roadblock or construction zone in the executive function neighborhood. A recent study investigated how blood flow in the prefrontal cortex, the executive control center, changed over time and its correlation with mild cognitive impairment (MCI) in patients with PD. The researchers recruited patients with PD and healthy control subjects, monitoring them over a 2-year period. Interestingly, they found that patients who later developed MCI showed reduced blood flow in specific prefrontal regions compared to those who remained cognitively normal. The study also linked these blood flow changes to declines in executive functions like attention, problem-solving, and decision-making. These findings highlight the potential role of decreased blood flow in prefrontal areas in early cognitive decline. Future research could investigate interventions to increase blood flow and potentially slow down or prevent cognitive decline in PD patients. For more details on this exciting study, check out the full article!
Cognitive impairment is a common non-motor symptom in Parkinson’s disease (PD), with executive dysfunction being an initial manifestation. We aimed to investigate whether and how longitudinal changes in the prefrontal perfusion correlate with mild cognitive impairment (MCI) in patients with PD. We recruited 49 patients with PD with normal cognition and 37 matched healthy control subjects (HCs). Patients with PD completed arterial spin labeling MRI (ASL–MRI) scans and a comprehensive battery of neuropsychological assessments at baseline (V0) and 2-year follow-up (V1). HCs completed similar ASL–MRI scans and neuropsychological assessments at baseline. At V1, 10 patients with PD progressed to MCI (converters) and 39 patients remained cognitively normal (non-converters). We examined differences in the cerebral blood flow (CBF) derived from ASL–MRI and neuropsychological measures (a) between patients with PD and HCs at V0 (effect of the disease), (b) between V1 and V0 in patients with PD (effect of the disease progression), and (c) between converters and non-converters (effect of the MCI progression) using t-tests or ANOVAs with false discovery rate correction. We further analyzed the relationship between longitudinal CBF and neuropsychological changes using multivariate regression models with false discovery rate correction, focusing on executive functions. At V0, no group difference was found in prefrontal CBF between patients with PD and HCs, although patients with PD showed worse performances on executive function. At V1, patients with PD showed significantly reduced CBF in multiple prefrontal regions, including the bilateral lateral orbitofrontal, medial orbitofrontal, middle frontal, inferior frontal, superior frontal, caudal anterior cingulate, and rostral anterior cingulate. More importantly, converters showed a more significant CBF reduction in the left lateral orbitofrontal cortex than non-converters. From V0 to V1, the prolonged completion time of Trail Making Test-B (TMT-B) negatively correlated with longitudinal CBF reduction in the right caudal anterior cingulate cortex. The decreased accuracy of the Stroop Color-Word Test positively correlated with longitudinal CBF reduction in the left medial orbitofrontal cortex. In addition, at V1, the completion time of TMT-B negatively correlated with CBF in the left caudal anterior cingulate cortex. Our findings suggest that longitudinal CBF reduction in the prefrontal cortex might impact cognitive functions (especially executive functions) at the early stages of PD.
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.