IntroductionOral consumption of probiotics can alter Gut Microbiota by causing changes in the production of probiotic derivatives. Therefore, by utilizing Gut-Brain-Axis (GBA), probiotics could provide an opportunity for central nervous system (CNS) modulation, including cognitive function. Tempeh is a traditional Indonesian food rich in probiotics and beneficial for cognitive function. However, the type of probiotics that play a role in cognitive improvement and the number of probiotics needed for the benefits of increasing cognitive function was unknown.MethodThis experimental study involved a total of 93 subjects, divided into 3 groups: A, B and C/control (n: 33, 32, and 28), who were provided with probiotic supplementation isolated from tempeh for 12 weeks intervention. Inclusion criteria were age > 60 years, and memory impairment with the third repetition value of Word List Memory Immediate Recall (WLMIR) < 7. Subjects with diabetes were excluded. Cognitive function examinations were carried out before and after treatment. The tempeh-derived probiotics were prepared trough several processes. Genomic isolation, detection of GABA-encoding genes, and species identification using the 16S-rRNA gene encoding were performed.ResultsThe probiotics isolate used in the intervention was identified as Limosilactobacillus fermentum. We assigned this isolate as L. fermentum A2.8. The presence of the gene encoding GABA was found on this isolate. There was an increase in the cognitive domains of memory, learning process, and verbal fluency (p < 0.05) in group A (probiotics at concentration of 108 CFU/mL). Memory function, visuospatial, and verbal fluency improved (p < 0.05) in group B (probiotics at concentration of 107 CFU/mL). Only an increase in the memory domain was observed in the control group. Improvement of the learning process occurred only in group A (p = 0.006).ConclusionAdministration of probiotics derived from L. fermentum A2.8 increased the cognitive domains of memory, language and visuospatial function. However, probiotic supplementation at a concentration of 108 CFU/mL was better in improving the learning process. This study succeeded in detecting Lactic Acid Bacterial isolates L. fermentum A2.8 that enclosed gene encoding glutamate decarboxylase (gad) which is involved in the synthesis of -aminobutyric acid (GABA), a neurotransmitter vital for cognitive function.
Read Full Article (External Site)

Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.