Decoding the Age-Dependent Response of Brain Cells to Stress in Rats

Published on May 3, 2022

Think of stress as a wild roller coaster ride for your brain. When stress hits, certain gene products called FOS proteins start to work and influence brain activity. But here’s the twist – as we grow older, these proteins start to decline. Now, there are two important players in this stress-induced brain dance: FOSB and ΔFOSB. FOSB helps us detect a quick response to stress, while ΔFOSB tells us about longer-lasting changes in neuron activity caused by chronic stress. The brain’s sensitivity to stress can change with age, just like our excitement levels for roller coasters may change as we get older! To understand this better, scientists studied how aging affects the neural responses of FOSB/ΔFOSB in male rats exposed to acute and chronic stress. They looked at 14 different brain areas involved in stress response, from the amygdala to the hypothalamus. What they found was fascinating – the levels of FOSB/ΔFOSB changed with age in these brain regions, but not always the same way. Some regions showed an increase in response to stress early on, while others maintained a steady response as rats got older. This could suggest that different brain areas have different thresholds for stress response as we age. So, next time you’re feeling stressed, remember that your brain cells may be reacting differently based on your age!

FOS proteins are early-responding gene products that contribute to the formation of activator protein-1. Several acute and chronic stimuli lead to Fos gene expression, accompanied by an increase of nuclear FOS, which appears to decline with aging. FOSB is another marker to detect acute cellular response, while ΔFOSB mirrors long-lasting changes in neuronal activity upon chronic stress. The notion that the occurrence of stress-related mood disorders shows some age dependence suggests that the brain’s stress sensitivity is also a function of age. To study age-dependent stress vulnerability at the immediate-early gene level, we aimed to describe how the course of aging affects the neural responses of FOSB/ΔFOSB in the acute restraint stress (ARS), and chronic variable mild stress (CVMS) in male rats. Fourteen brain areas [central, medial, basolateral (BLA) amygdala; dorsolateral- (BNSTdl), oval- (BNSTov), dorsomedial-, ventral- (BNSTv), and fusiform- (BNSTfu) divisions of the bed nucleus of the stria terminalis; medial and lateral habenula, hypothalamic paraventricular nucleus (PVN), centrally-projecting Edinger-Westphal nucleus, dorsal raphe nucleus, barrel field of somatosensory cortex (S1)] were examined in the course of aging. Eight age groups [1-month-old (M), 1.5 M, 2 M, 3 M, 6 M, 12 M, 18 M, and 24 M] of rats were exposed to a single ARS vs. controls. In addition, rats in six age groups (2, 3, 6, 12, 18, and 24 M) were subjected to CVMS. The FOSB/ΔFOSB immunoreactivity (IR) was a function of age in both controls, ARS- and CVMS-exposed rats. ARS increased the FOSB/ΔFOSB in all nuclei (except in BLA), but only BNSTfu, BNSTv, and PVN reacted throughout the examined lifespan. The CVMS did not increase the FOSB/ΔFOSB in BLA, BNSTov, BNSTdl, and S1. PVN showed a constantly maintained FOSB/ΔFOSB IR during the examined life period. The maximum stress-evoked FOSB/ΔFOSB signal was detected at 2–3 M periods in the ARS- and at 6 M, 18 M in CVMS- model. Corresponding to our previous observations on FOS, the FOSB/ΔFOSB response to stress decreased with age in most of the examined nuclei. Only the PVN exerted a sustained age-independent FOSB/ΔFOSB, which may reflect the long-lasting adaptation response and plasticity of neurons that maintain the hypothalamus-pituitary-adrenal axis response throughout the lifespan.

Read Full Article (External Site)

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>