A Neuro-Computational Model for Discrete-Continuous Dual-Task Process

Published on March 29, 2022

Imagine you’re juggling two tasks at once – tracking the movement of a moving object while listening to a sound. This study explores the brain’s ability to handle such dual-task situations by conducting an experiment using a computer-based task that involved simultaneously tracking objects with a mouse and identifying auditory cues. The results showed that different parts of the brain synchronized in response to the two tasks. Researchers then developed a computational model based on these findings to understand how the brain manages interference between tasks. By comparing the model’s predictions with experimental data, they found that the auditory task affected the dual-task process, but the continuous tracking task remained relatively unaffected. These findings align with previous research suggesting that interference primarily arises during response preparation rather than stimulus processing. Additionally, the model’s flexibility allows for investigating various types of dual-task scenarios and predicting how changes in parameters may mimic conditions seen in neurological disorders. Fascinating, right? Check out the full article for more details!

Studies on dual-task (DT) procedures in human behavior are important, as they can offer great insight into the cognitive control system. Accordingly, a discrete-continuous auditory-tracking DT experiment was conducted in this study with different difficulty conditions, including a continuous mouse-tracking task concurrent with a discrete auditory task (AT). Behavioral results of 25 participants were investigated via different factors, such as response time (RT), errors, and hesitations (pauses in tracking tasks). In DT, synchronization of different target neuron units was observed in corresponding brain regions; consequently, a computational model of the stimulus process was proposed to investigate the DT interference procedure during the stimulus process. This generally relates to the bottom-up attention system that a neural resource allocates for various ongoing stimuli. We proposed a black-box model based on interactions and mesoscopic behaviors of neural units. Model structure was implemented based on neurological studies and oscillator units to represent neural activities. Each unit represents one stimulus feature of task concept. Comparing the model’s output behavior with the experiment results (RT) validates the model. Evaluation of the proposed model and data on RT implies that the stimulus of the AT affects the DT procedure in the model output (84% correlation). However, the continuous task is not significantly changed (26% correlation). The continuous task simulation results were inconsistent with the experiment, suggesting that continuous interference occurs in higher cognitive processing regions and is controlled by the top-down attentional system. However, this is consistent with the psychological research finding of DT interference occurring in response preparation rather than the stimulus process stage. Furthermore, we developed the proposed model by adding qualitative interpretation and saving the model’s generality to address various types of discrete continuous DT procedures. The model predicts a justification method for brain rhythm interactions by synchronization, and manipulating parameters would produce different behaviors. The decrement of coupling parameter and strength factor would predict a similar pattern as in Parkinson’s disease and ADHD disorder, respectively. Also, by increasing the similarity factor among the features, the model’s result shows automatic task performance in each task.

Read Full Article (External Site)

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>