Background and Purpose: Motor deficits are the most common disability after stroke, and early prediction of motor outcomes is critical for guiding the choice of early interventions. Two main factors that may impact the response to rehabilitation are variations in the microstructure of the affected corticospinal tract (CST) and genetic polymorphisms in brain-derived neurotrophic factor (BDNF). The purpose of this article was to review the role of these factors in stroke recovery, which will be useful for constructing a predictive model of rehabilitation outcomes.Summary of Review: We review the microstructure of the CST, including its origins in the primary motor area (M1), primary sensory area (S1), premotor cortex (PMC), and supplementary motor area (SMA). Damage to these fibers is disease-causing and can directly affect rehabilitation after subcortical stroke. BDNF polymorphisms are not disease-causing but can indirectly affect neuroplasticity and thus motor recovery. Both factors are known to be correlated with motor recovery. Further work is needed using large longitudinal patient samples and animal experiments to better establish the role of these two factors in stroke rehabilitation.Conclusions: Microstructure and genetic polymorphisms should be considered possible predictors or covariates in studies investigating motor recovery after subcortical stroke. Future predictive models of stroke recovery will likely include a combination of structural and genetic factors to allow precise individualization of stroke rehabilitation strategies.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.