Virtual reality games are playing a greater role in rehabilitation settings. Previously, commercial games have dominated, but increasingly, bespoke games for specific rehabilitation contexts are emerging. Choice and design of tasks for VR-games are still not always clear, however; some games are designed to motivate and engage players, not necessarily with the facilitation of specific movements as a goal. Other games are designed specifically for the facilitation of specific movements. A theoretical background for the choice of tasks seems warranted. As an example, we use a game that was designed in our lab: VR Walk. Here, the player walks on a treadmill while wearing a head-mounted display showing a custom-made virtual environment. Tasks include walking on a glass bridge across a drop, obstacle avoidance, narrowing path, walking in virtual footsteps, memory, and selection tasks, and throwing and catching objects. Each task is designed according to research and theory from movement science, exercise science, and cognitive science. In this article, we discuss how for example walking across a glass bridge gives perceptual challenges that may be suitable for certain medical conditions, such as hearing loss, when perceptual abilities are strained to compensate for the hearing loss. In another example, walking in virtual footsteps may be seen as a motor and biomechanical constraint, where the double support phase and base of support can be manipulated, making the task beneficial for falls prevention. In a third example, memory and selection tasks may challenge individuals that have cognitive impairments. We posit that these theoretical considerations may be helpful for the choice of tasks and for the design of virtual reality games.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.