Background: Stroke is a common cause of motor disability. The recovery of upper limb after stroke is poor, with few stroke survivors regaining some functional use of the affected upper limb. This is further complicated by the fact that the prolonged rehabilitation is accompanied by multiple challenges in using and identifying meaningful and motivated treatment tasks that may be adapted and graded to facilitate the rehabilitation program. Virtual reality-based therapy is one of the most innovative approaches in rehabilitation technology and virtual reality systems can provide enhanced feedback to promote motor learning in individuals with neurological or musculoskeletal diseases.Purpose: This study investigated the effect of virtual reality-based therapy on improving upper limb functions in individuals with chronic stroke.Methods: Forty Saudi individuals with chronic stroke (6–24 months following stroke incidence) and degree of spasticity ranged between 1, 1 + and 2 according to Modified Ashworth Scale were included in this study. Participants were randomly assigned into two groups, experimental and control, with the experimental group undertaking a conventional 1-h functional training program, followed by another hour of virtual reality-based therapy using Armeo Spring equipment and the control group received 2 h of a conventional functional training program. The treatment program was conducted three times per week for three successive months. The change in the scores of Action Research Arm Test (ARAT), Wolf Motor Function Test (WMFT), WMFT-Time (time required to complete the test) and Hand Grip Strength (HGS) were recorded at baseline and after completion of the treatment. Parametric (paired and unpaired t-tests) non-parametric (Wilcoxon and Mann–Whitney tests) statistical tests were used to identify the differences within and between groups (experimental group and control group) and evaluation times (pre- and immediately post-treatment).Results: Both groups showed significant differences (all, P < 0.05) in all measured variables after 3 months of the treatment. Individuals with stoke in the experimental group had a better improvement in ARAT (P < 0.01), WMFT (P < 0.01) and WMFT-Time (P < 0.01) scores after completion of the treatment compared to the control group. No significant difference in HGS scores was detected between groups after completion of the treatment (P = 0.252).Conclusion: The use of combined treatment of virtual reality-based therapy and conventional functional training program is more effective for improving upper limb functions in individuals with chronic stroke than the use of the conventional program alone.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.