Background: The regional distribution of the widespread cerebral morphological alterations in progressive supranuclear palsy (PSP) is considered to include segmental parts of the corpus callosum (CC).Objective: The study was designed to investigate the regional white matter (WM) of the CC by T1 weighted magnetic resonance imaging (T1w MRI) data combined with diffusion tensor imaging (DTI) data in PSP patients, differentiated in the variants Richardson syndrome and PSP-parkinsonism, and to compare them with Parkinson’s Disease (PD) patients and healthy controls, in order to identify macro- and micro-structural alterations in vivo.Methods: MRI-based WM mapping was used to perform an operator-independent segmentation for the different CC segments in 66 PSP patients vs. 66 PD patients vs. 44 matched healthy controls. The segmentation was followed by both planimetric and texture analysis of the separated CC areas for the comparison of the three groups. Results were complemented by a DTI-based tract-of-interest analysis of the associated callosal tracts.Results: Significant alterations of the parameters entropy and homogeneity compared to controls were observed for PSP as well as for PD for the CC areas I, II, and III. The inhomogeneity in area II in the PSP cohort was the highest and differed significantly from PD. A combined score was defined as a potential marker for the different types of neurodegenerative parkinsonism; receiver operating characteristics (ROC) curves were calculated with areas under the curve values of 0.86 for PSP vs. controls, 0.72 for PD vs. controls, and 0.69 for PSP vs. PD, respectively.Conclusion: The multiparametric MRI texture and DTI analysis demonstrated extensive alterations of the frontal CC in neurodegenerative parkinsonism, whereas regional CC atrophy cannot be regarded as a constant neuroimaging feature of PSP. Specifically, the comparison PSP vs. PD revealed significant alterations in callosal area II. The combination of the texture and the DTI parameters might contribute as a neuroimaging marker for the assessment of the CC in PSP, including the differentiation vs. PD.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.