Finger gesture recognition (FGR) plays a crucial role in achieving, for example, artificial limb control and human-computer interaction. Currently, the most common methods of FGR are visual-based, voice-based, and surface electromyography (EMG)-based ones. Among them, surface EMG-based FGR is very popular and successful because surface EMG is a cumulative bioelectric signal from the surface of the skin that can accurately and intuitively represent the force of the fingers. However, existing surface EMG-based methods still cannot fully satisfy the required recognition accuracy for artificial limb control as the lack of high-precision sensor and high-accurate recognition model. To address this issue, this study proposes a novel FGR model that consists of sensing and classification of surface EMG signals (SC-FGR). In the proposed SC-FGR model, wireless sensors with high-precision surface EMG are first developed for acquiring multichannel surface EMG signals from the forearm. Its resolution is 16 Bits, the sampling rate is 2 kHz, the common-mode rejection ratio (CMRR) is less than 70 dB, and the short-circuit noise (SCN) is less than 1.5 μV. In addition, a convolution neural network (CNN)-based classification algorithm is proposed to achieve FGR based on acquired surface EMG signals. The CNN is trained on a spectrum map transformed from the time-domain surface EMG by continuous wavelet transform (CWT). To evaluate the proposed SC-FGR model, we compared it with seven state-of-the-art models. The experimental results demonstrate that SC-FGR achieves 97.5% recognition accuracy on eight kinds of finger gestures with five subjects, which is much higher than that of comparable models.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.