Abstract
Iterated language learning experiments that explore the emergence of linguistic structure in the laboratory vary considerably in methodological implementation, limiting the generalizability of findings. Most studies also restrict themselves to exploring the emergence of combinatorial and compositional structure in isolation. Here, we use a novel signal space comprising binary auditory and visual sequences and manipulate the amount of learning and temporal stability of these signals. Participants had to learn signals for meanings differing in size, shape, and brightness; their productions in the test phase were transmitted to the next participant. Across transmission chains of 10 generations each, Experiment 1 varied how much learning of auditory signals took place, and Experiment 2 varied temporal stability of visual signals. We found that combinatorial structure emerged only for auditory signals, and iconicity emerged when the amount of learning was reduced, as an opportunity for rote-memorization hampers the exploration of the iconic affordances of the signal space. In addition, compositionality followed an inverted u-shaped trajectory raising across several generations before declining again toward the end of the transmission chains. This suggests that detection of systematic form-meaning linkages requires stable combinatorial units that can guide learners toward the structural properties of signals, but these combinatorial units had not yet emerged in these unfamiliar systems. Our findings underscore the importance of systematically manipulating training conditions and signal characteristics in iterated language learning experiments to study the interactions between the emergence of iconicity, combinatorial and compositional structure in novel signaling systems.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.