Parkinson’s disease (PD) is the second most common neurodegenerative disease. The main symptoms are motor signs such as resting tremor and difficulty in initializing movements. Non-motor alterations, such as cognitive deficits, can precede the motor symptoms. PD is more frequent in men than women. The mechanisms related to this difference are not completely understood. There is evidence that females present distinct characteristics in dopaminergic function compared to males. While the severity of motor impairments is often compared between sexes, little is known about sex differences in the prodromal stage. Most animal models of PD present acute severe motor impairment, which precludes the study of non-motor symptoms. Our research group have proposed an adaptation of the classic reserpine protocol, using low doses in a chronic treatment. This method allows the observation of progressive motor impairment as well as premotor deficits. Here we investigate possible behavioral and neuronal sex differences in the effects of the repeated treatment with a low dose of reserpine in rats. Male and female Wistar rats received 10–15 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. We followed-up the estrous cycle phases and conducted motor and cognitive assessments (catalepsy, open field, oral movements and object recognition tests). The euthanasia occurred 48 h after the 10th or 15th injections, with the collection of blood for the quantification of sex hormones and brains for tyrosine hydroxylase (TH) immunohistochemistry in the substantia nigra pars compact (SNpc). Reserpine induced progressive catalepsy, involuntary oral movements and cognitive deficits in male rats. The behavioral effects of reserpine were attenuated (motor) or absent (cognitive) in females. Reserpine decreased TH immunoreactivity in males, but not in females. Estrogen levels in females negatively correlated with catalepsy duration. Our findings show that females present a delay and/or a prevention in the reserpine-induced motor alterations in the progressive PD model, compatible with the lower prevalence of this disease in women. Further, females were protected from the deficit in object recognition at the prodromal stage. The absence of reserpine-induce decrease in TH immunoreactivity suggests that differences in dopaminergic function/plasticity are related to this protection in female sex.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.