BackgroundMultimodal CT, including CT angiography (CTA) and CT perfusion (CTP), was increasingly used in stroke triage. This study was to determine the relationship between a new integrated parameter—both collateral circulation and relative permeability surface (PS)—and the hemorrhagic transformation (HT) in acute ischemic stroke (AIS) with middle cerebral artery occlusion (MCAO).MethodsWe retrospectively reviewed consecutive AIS patients with MCAO who underwent baseline CTA/CTP within 4 h of symptom onset and follow-up susceptibility-weighted imaging (SWI) within 3 weeks. Collateral circulation was assessed on the baseline CTA. Baseline CTP data were postprocessed to generate PS parameter. The patients with poor collateral circulation and at the same time with high relative PS were classified as the group of both poor collateral circulation and high relative PS. HT was defined according to European Cooperative Acute Stroke Study II criteria on follow-up SWI imaging. Multivariate logistic regression analysis was performed using HT as an outcome variable.ResultsThe group of patients with both poor collateral circulation and high relative PS was thirteen and thirty-three (52%) developed HT of the final cohort sixty-three AIS patients with MCAO. Multivariate logistic analysis revealed the new integrated parameter—both collateral circulation and relative PS (odds ratio, 16.59; 95% confidence interval, 13.09–19.10; P < 0.001) was independent predictor of HT. The area under the curve was 0.85 (95% confidence interval, 0.81–0.89). The sensitivity was 57%, specificity 97% and positive predictive value 92%, negative predictive value 58%.ConclusionsFor AIS patients with MCAO, these with poor collateral circulation on CTA and at the same time with high relative PS on CTP were at high risk for HT.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.