Abstract
The paper addresses the capabilities and limitations of extrafoveal processing during a categorical visual search. Previous research has established that a target could be identified from the very first or without any saccade, suggesting that extrafoveal perception is necessarily involved. However, the limits in complexity defining the processed information are still not clear. We performed four experiments with a gradual increase of stimuli complexity to determine the role of extrafoveal processing in searching for the categorically defined geometric shape. The series of experiments demonstrated a significant role of extrafoveal processing while searching for simple two-dimensional shapes and its gradual decrease in a condition with more complicated three-dimensional shapes. The factors of objects’ spatial orientation and distractor homogeneity significantly influenced both reaction time and the number of saccades required to identify a categorically defined target. An analysis of the individual p-value distributions revealed pronounced individual differences in using extrafoveal analysis and allowed examination of the performance of each particular participant. The condition with the forced prohibition of eye movements enabled us to investigate the efficacy of covert attention in the condition with complicated shapes. Our results indicate that both foveal and extrafoveal processing are simultaneously involved during a categorical search, and the specificity of their interaction is determined by the spatial orientation of objects, type of distractors, the prohibition to use overt attention, and individual characteristics of the participants.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.