Background: Neuronal reactions and cognitive processes slow down during aging. The onset, rate, and extent of changes vary considerably from individual to individual. Assessing the changes throughout the lifespan is a challenging task. No existing test covers all domains, and batteries of tests are administered. The best strategy is to study each functional domain separately by applying different behavioral tasks whereby the tests reflect the conceptual structure of cognition. Such an approach has limitations that are described in the article.Objective: Our aim was to improve the diagnosis of early cognitive decline. We estimated the onset of cognitive decline in a healthy population, using behavioral tests, and predicted the age group of an individual. The comparison between the predicted (“cognitive”) and chronological age will contribute to the early diagnosis of accelerated aging.Materials and Methods: We used publicly available datasets (POBA, SSCT) and Pearson correlation coefficients to assess the relationship between age and tests results, Kruskal-Wallis test to compare distribution, clustering methods to find an onset of cognitive decline, feature selection to enhance performance of the clustering algorithms, and classification methods to predict an age group from cognitive tests results.Results: The major results of the psychophysiological tests followed a U-shape function across the lifespan, which reflected the known inverted function of white matter volume changes. Optimal values were observed in those aged over 35 years, with a period of stability and accelerated decline after 55–60 years of age. The shape of the age-related variance of the performance of major cognitive tests was linear, which followed the trend of lifespan gray matter volume changes starting from adolescence. There was no significant sex difference in lifelong dynamics of major tests estimates. The performance of the classification model for identifying subject age groups was high.Conclusions: ML models can be designed and utilized as computer-aided detectors of neurocognitive decline. Our study demonstrated great promise for the utility of classification models to predict age-related changes. These findings encourage further explorations combining several tests from the cognitive and psychophysiological test battery to derive the most reliable set of tests toward the development of a highly-accurate ML model.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.