Research on pre-impact fall detection with wearable inertial sensors (detecting fall accidents prior to body-ground impacts) has grown rapidly in the past decade due to its great potential for developing an on-demand fall-related injury prevention system. However, most researchers use their own datasets to develop fall detection algorithms and rarely make these datasets publicly available, which poses a challenge to fairly evaluate the performance of different algorithms on a common basis. Even though some open datasets have been established recently, most of them are impractical for pre-impact fall detection due to the lack of temporal labels for fall time and limited types of motions. In order to overcome these limitations, in this study, we proposed and publicly provided a large-scale motion dataset called “KFall,” which was developed from 32 Korean participants while wearing an inertial sensor on the low back and performing 21 types of activities of daily living and 15 types of simulated falls. In addition, ready-to-use temporal labels of the fall time based on synchronized motion videos were published along with the dataset. Those enhancements make KFall the first public dataset suitable for pre-impact fall detection, not just for post-fall detection. Importantly, we have also developed three different types of latest algorithms (threshold based, support-vector machine, and deep learning), using the KFall dataset for pre-impact fall detection so that researchers and practitioners can flexibly choose the corresponding algorithm. Deep learning algorithm achieved both high overall accuracy and balanced sensitivity (99.32%) and specificity (99.01%) for pre-impact fall detection. Support vector machine also demonstrated a good performance with a sensitivity of 99.77% and specificity of 94.87%. However, the threshold-based algorithm showed relatively poor results, especially the specificity (83.43%) was much lower than the sensitivity (95.50%). The performance of these algorithms could be regarded as a benchmark for further development of better algorithms with this new dataset. This large-scale motion dataset and benchmark algorithms could provide researchers and practitioners with valuable data and references to develop new technologies and strategies for pre-impact fall detection and proactive injury prevention for the elderly.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.