Background: Advances in machine learning (ML) technology have opened new avenues for detection and monitoring of cognitive decline. In this study, a multimodal approach to Alzheimer’s dementia detection based on the patient’s spontaneous speech is presented. This approach was tested on a standard, publicly available Alzheimer’s speech dataset for comparability. The data comprise voice samples from 156 participants (1:1 ratio of Alzheimer’s to control), matched by age and gender.Materials and Methods: A recently developed Active Data Representation (ADR) technique for voice processing was employed as a framework for fusion of acoustic and textual features at sentence and word level. Temporal aspects of textual features were investigated in conjunction with acoustic features in order to shed light on the temporal interplay between paralinguistic (acoustic) and linguistic (textual) aspects of Alzheimer’s speech. Combinations between several configurations of ADR features and more traditional bag-of-n-grams approaches were used in an ensemble of classifiers built and evaluated on a standardised dataset containing recorded speech of scene descriptions and textual transcripts.Results: Employing only semantic bag-of-n-grams features, an accuracy of 89.58% was achieved in distinguishing between Alzheimer’s patients and healthy controls. Adding temporal and structural information by combining bag-of-n-grams features with ADR audio/textual features, the accuracy could be improved to 91.67% on the test set. An accuracy of 93.75% was achieved through late fusion of the three best feature configurations, which corresponds to a 4.7% improvement over the best result reported in the literature for this dataset.Conclusion: The proposed combination of ADR audio and textual features is capable of successfully modelling temporal aspects of the data. The machine learning approach toward dementia detection achieves best performance when ADR features are combined with strong semantic bag-of-n-grams features. This combination leads to state-of-the-art performance on the AD classification task.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.