Recurrent cortical networks provide reservoirs of states that are thought to play a crucial role for sequential information processing in the brain. However, classical reservoir computing requires manual adjustments of global network parameters, particularly of the spectral radius of the recurrent synaptic weight matrix. It is hence not clear if the spectral radius is accessible to biological neural networks. Using random matrix theory, we show that the spectral radius is related to local properties of the neuronal dynamics whenever the overall dynamical state is only weakly correlated. This result allows us to introduce two local homeostatic synaptic scaling mechanisms, termed flow control and variance control, that implicitly drive the spectral radius toward the desired value. For both mechanisms the spectral radius is autonomously adapted while the network receives and processes inputs under working conditions. We demonstrate the effectiveness of the two adaptation mechanisms under different external input protocols. Moreover, we evaluated the network performance after adaptation by training the network to perform a time-delayed XOR operation on binary sequences. As our main result, we found that flow control reliably regulates the spectral radius for different types of input statistics. Precise tuning is however negatively affected when interneural correlations are substantial. Furthermore, we found a consistent task performance over a wide range of input strengths/variances. Variance control did however not yield the desired spectral radii with the same precision, being less consistent across different input strengths. Given the effectiveness and remarkably simple mathematical form of flow control, we conclude that self-consistent local control of the spectral radius via an implicit adaptation scheme is an interesting and biological plausible alternative to conventional methods using set point homeostatic feedback controls of neural firing.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.