Accurate simulations of brain structures is a major problem in neuroscience. Many works are dedicated to design better models or to develop more efficient simulation schemes. In this paper, we propose a hybrid simulation scheme that combines time-stepping second-order integration of Hodgkin-Huxley (HH) type neurons with event-driven updating of the synaptic currents. As the HH […]
Published on October 14, 2020
New technologies for recording the activity of large neural populations during complex behavior provide exciting opportunities for investigating the neural computations that underlie perception, cognition, and decision-making. Non-linear state space models provide an interpretable signal processing framework by combining an intuitive dynamical system with a probabilistic observation model, which can provide insights into neural dynamics, […]
Published on October 14, 2020
Learning from limited exemplars (few-shot learning) is a fundamental, unsolved problem that has been laboriously explored in the machine learning community. However, current few-shot learners are mostly supervised and rely heavily on a large amount of labeled examples. Unsupervised learning is a more natural procedure for cognitive mammals and has produced promising results in many […]
Published on October 14, 2020