Humans organize sequences of events into a single overall experience, and evaluate the aggregated experience as a whole, such as a generally pleasant dinner, movie, or trip. However, such evaluations are potentially computationally taxing, and so our brains must employ heuristics (i.e., approximations). For example, the peak-end rule hypothesis suggests that we average the peaks and end of a sequential event vs. integrating every moment. However, there is no general model to test viable hypotheses quantitatively. Here, we propose a general model and test among multiple specific ones, while also examining the role of working memory. The models were tested with a novel picture-rating task. We first compared averaging across entire sequences vs. the peak-end heuristic. Correlation tests indicated that averaging prevailed, with peak and end both still having significant prediction power. Given this, we developed generalized order-dependent and relative-preference-dependent models to subsume averaging, peak and end. The combined model improved the prediction power. However, based on limitations of relative-preference—including imposing a potentially arbitrary ranking among preferences—we introduced an absolute-preference-dependent model, which successfully explained the remembered utilities. Yet, because using all experiences in a sequence requires too much memory as real-world settings scale, we then tested “windowed” models, i.e., evaluation within a specified window. The windowed (absolute) preference-dependent (WP) model explained the empirical data with long sequences better than without windowing. However, because fixed-windowed models harbor their own limitations—including an inability to capture peak-event influences beyond a fixed window—we then developed discounting models. With (absolute) preference-dependence added to the discounting rate, the results showed that the discounting model reflected the actual working memory of the participants, and that the preference-dependent discounting (PD) model described different features from the WP model. Taken together, we propose a combined WP-PD model as a means by which people evaluate experiences, suggesting preference-dependent working-memory as a significant factor underlying our evaluations.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.