Background: There is growing evidence supporting behavioral variant frontotemporal dementia (bvFTD) and amyotrophic lateral sclerosis (ALS) as extreme points of a disease spectrum. The aim of this study was to delineate the common and different patterns of gray matter atrophy associated with bvFTD and with ALS by pooling together the results of previous voxel-based morphometry (VBM) studies.Methods: We retrieved VBM studies that investigated gray matter atrophy in bvFTD patients vs. controls and in ALS patients vs. controls. Stereotactic data were extracted from those studies and subsequently tested for convergence and differences using activation likelihood estimation (ALE). A behavioral analysis using the BrainMap database was performed to assess the functional roles of the regions affected by bvFTD and/or ALS.Results: Our study demonstrated a convergence of gray matter atrophy in the frontolimbic structures that involve the bilateral anterior insula and anterior cingulate cortex. Comparing the pattern of GM atrophy in bvFTD and ALS patients revealed greater atrophy in the frontomedial cortex, bilateral caudate, left anterior insula, and right thalamus in those with bvFTD and a higher degree of atrophy in the right motor cortex of those with ALS. Behavioral analysis revealed that the pattern of the affected regions contributed to the dysfunction of emotional and cognitive processing in bvFTD patients and the dysfunction of motor execution in ALS patients.Conclusion: Our results revealed a shared neural basis between bvFTD and ALS subjects, as well as a specific and distinct neural signature that underpinned the clinical manifestations of those two diseases. Those findings outlined the role of the frontomedial-caudate circuit in the development of bvFTD-like deficits in ALS patients.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.