Abstract
High phonological neighborhood density has been associated with both advantages and disadvantages in early word learning. High density may support the formation and fine‐tuning of new word sound memories—a process termed lexical configuration (e.g., Storkel, 2004). However, new high‐density words are also more likely to be misunderstood as instances of known words, and may therefore fail to trigger the learning process (e.g., Swingley & Aslin, 2007). To examine these apparently contradictory effects, we trained an autoencoder neural network on 587,954 word tokens (5,497 types, including mono‐ and multisyllabic words of all grammatical classes) spoken by 279 caregivers to English‐speaking children aged 18–24 months. We then simulated a communicative development inventory administration and compared network performance to that of 2,292 children aged 18–24 months. We argue that autoencoder performance illustrates concurrent density advantages and disadvantages, in contrast to prior behavioral and computational literature treating such effects independently. Low network error rates signal a configuration advantage for high‐density words, while high network error rates signal a triggering advantage for low‐density words. This interpretation is consistent with the application of autoencoders in academic research and industry, for simultaneous feature extraction (i.e., configuration) and anomaly detection (i.e., triggering). Autoencoder simulation therefore illustrates how apparently contradictory density and distinctiveness effects can emerge from a common learning mechanism.
Open Research Badges
This article has earned an Open Data badge for making publicly available the digitally‐shareable data necessary to reproduce the reported results. The data is available at https://osf.io/2qk5j/. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.