Sparse coding models of natural images and sounds have been able to predict several response properties of neurons in the visual and auditory systems. While the success of these models suggests that the structure they capture is universal across domains to some degree, it is not yet clear which aspects of this structure are universal and which vary across sensory modalities. To address this, we fit complete and highly overcomplete sparse coding models to natural images and spectrograms of speech and report on differences in the statistics learned by these models. We find several types of sparse features in natural images, which all appear in similar, approximately Laplacian distributions, whereas the many types of sparse features in speech exhibit a broad range of sparse distributions, many of which are highly asymmetric. Moreover, individual sparse coding units tend to exhibit higher lifetime sparseness for overcomplete models trained on images compared to those trained on speech. Conversely, population sparseness tends to be greater for these networks trained on speech compared with sparse coding models of natural images. To illustrate the relevance of these findings to neural coding, we studied how they impact a biologically plausible sparse coding network’s representations in each sensory modality. In particular, a sparse coding network with synaptically local plasticity rules learns different sparse features from speech data than are found by more conventional sparse coding algorithms, but the learned features are qualitatively the same for these models when trained on natural images.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.