Today, face biometric systems are becoming widely accepted as a standard method for identity authentication in many security settings. For example, their deployment in automated border control gates plays a crucial role in accurate document authentication and reduced traveller flow rates in congested border zones. The proliferation of such systems is further spurred by the advent of portable devices. On the one hand, modern smartphone and tablet cameras have in-built user authentication applications while on the other hand, their displays are being consistently exploited for face spoofing. Similar to biometric systems of other physiological biometric identifiers, face biometric systems have their own unique set of potential vulnerabilities. In this work, these vulnerabilities (presentation attacks) are being explored via a biologically-inspired presentation attack detection model which is termed ‘BIOPAD’. Our model employs Gabor features in a feedforward hierarchical structure of layers that progressively process and train from visual information of people’s faces, along with their presentation attacks, in the visible and near-infrared spectral regions. BIOPAD’s performance is directly compared with other popular biologically-inspired layered models such as the ‘Hierarchical Model And X’ (HMAX) that applies similar handcrafted features, and Convolutional Neural Networks (CNN) that discover low-level features through stochastic descent training. BIOPAD shows superior performance to both HMAX and CNN in all of the three presentation attack databases examined and these results were consistent in two different classifiers (Support Vector Machine and k-nearest neighbour). In certain cases, our findings have shown that BIOPAD can produce authentication rates with 99% accuracy. Finally, we further introduce a new presentation attack database with visible and near-infrared information for direct comparisons. Overall, BIOPAD’s operation, which is to fuse information from different spectral bands at both feature and score levels for the purpose of face presentation attack detection, has never been attempted before with a biologically-inspired algorithm. Obtained detection rates are promising and confirm that near-infrared visual information significantly assists in overcoming presentation attacks.
Read Full Article (External Site)
Dr. David Lowemann, M.Sc, Ph.D., is a co-founder of the Institute for the Future of Human Potential, where he leads the charge in pioneering Self-Enhancement Science for the Success of Society. With a keen interest in exploring the untapped potential of the human mind, Dr. Lowemann has dedicated his career to pushing the boundaries of human capabilities and understanding.
Armed with a Master of Science degree and a Ph.D. in his field, Dr. Lowemann has consistently been at the forefront of research and innovation, delving into ways to optimize human performance, cognition, and overall well-being. His work at the Institute revolves around a profound commitment to harnessing cutting-edge science and technology to help individuals lead more fulfilling and intelligent lives.
Dr. Lowemann’s influence extends to the educational platform BetterSmarter.me, where he shares his insights, findings, and personal development strategies with a broader audience. His ongoing mission is shaping the way we perceive and leverage the vast capacities of the human mind, offering invaluable contributions to society’s overall success and collective well-being.